Exploration 4.3-Triangles Defined by Spokes

In the preceding exploration, you built a right triangle and then fit it into a circle. This exploration provides another point of view: You start with a circle and make some right triangles.

Investigation 1-Spokes and Right Triangles

You will make some spokes of equal length sticking out from point A and then study the situation when the angle formed by the endpoints of the spokes is 90 degrees. This will help explain the Carpenter's Construction.

Construction

- Draw circle $A B$. Hide point B.
- Place three points C, D, and E on the circumference of the circle and draw segments (radii) $A C, A D, A E$.
- Make the circle and radii dashed.

This leaves three segments of equal length with a common endpoint A, which you can drag around.

- Draw segments $C D$ and $D E$ and measure angle $C D E$.

Experiment

- Move the points C, D, and E around and look for configurations in which angle $C D E$ is approximately 90 degrees.
What do you observe about the points C, A, and E when angle $C D E$ is 90 degrees? Think about why this is true in the light of earlier explorations.
- Start with the figure in a position in which angle $C D E$ is approximately 90 degrees. Leaving points C and E fixed, move the point D. What happens to the angle?

Conclusions

Q1. From your observations, write a conjecture describing the relationship among the points C, A, and E when angle $C D E$ is 90 degrees.
Q2. How can you use the results of the previous paper-folding experiment to explain why your conjecture is true?
Q3. Use your conjecture to explain why the 90-degree angle $C D E$ does not change when point D is moved and points C and E are stationary.

Explore More-Other Spoke Angles

In the preceding experiment you studied the figure $A C D E$ when angle $C D E$ is a right angle.

An angle CDE, where the points C, D, and E are on a circle, is called an inscribed angle in the circle.

Continue the experiment with the same figure when the inscribed angle $C D E$ is some angle other than a right angle. Here are some questions to investigate.
Q1. If you move point D and leave the others fixed, how does angle $C D E$ change?
Q2. Label the equal angles in the triangles $A C D$ and $A D E$ and show how relations among the angles can help explain the behavior of angle $C D E$ in Q1.
Q3. Conjecture how angle $C D E$ is related to angle $C A E$. Explain why your conjecture is true using the relations in Q2.

